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Abstract. The Structural Induction Theorem (Lehmann and Smyth,
1981; Plotkin, 1981) characterizes initial F-algebras of locally continuous
functors F on the category of cpo’s with strict and continuous maps.
Here a dual of that theorem is presented, giving a number of equivalent
characterizations of final coalgebras of such functors. In particular, final
coalgebras are order strongly-extensional (sometimes called internal full
abstractness): the order is the union of all (ordered) F-bisimulations.
(Since the initial fixed point for locally continuous functors is also final,
both theorems apply.) Further, a similar co-induction theorem is given
for a category of complete metric spaces and locally contracting functors.

1 Introduction

Consider a preorder (P, <) and a monotone function f : P — P. An element
g € P is a post-fixed point of f (also called f-consistent) if ¢ < f(g). If the
collection of post-fixed points of f has a largest element, then this is also the
greatest fixed point of f. Defining p as the greatest post-fixed point of f is
sometimes called a co-inductive definition. (A typical example is a complete
lattice (P, C) and a monotone function f, which by Tarski’s fixed-point theorem
has a greatest (post-)fixed point.) Being the greatest post-fixed point can also
be used as a proof method: in order to establish ¢ < p, for ¢ € P, it is sufficient
to prove ¢ < f(g). This fact is sometimes called a co-induction principle.

A familiar example in computer science is the co-inductive definition of the
bisimilarity relation on a labelled transition system. It is defined as the greatest
fixed point of a monotone function on the lattice of relations on the states of
this transition system (see [Mil89]). An example of the above co-induction proof
principle can be found in [MT91], where it is used to prove the consistency of the
static and the dynamic semantics of a simple functional programming language
with recursive functions.

By generalizing preorders to categories C and monotone functions to functors
F : C — C, a co-induction principle can be obtained for recursive data types,
which are often defined as fixed points. Post-fixed points of F' are F-coalgebras
(A, @), and consist of an object Ain C together with an arrow o : A — F(A) (gen-
eralizing <). These F-coalgebras form again a category, as the post-fixed points
of a monotonic function form a preorder. Arrows between two F-coalgebras
(A, ) and (B, ) are arrows f : A — B (in C) such that Bo f = F(f)oa. A
greatest post-fixed point for a functor F is a final F-coalgebra (A, a): for any



84

other F-coalgebra (B,[3) there exists a unique arrow f : (B,8) — (4,a). If
(A, @) is a final F-coalgebra then A is a fixed point of F (i.e., « is an isomor-
phism).

As will become apparent, the richer structure of categories allows for a num-
ber of different formulations of a co-induction principle for final coalgebras of
functors. For instance, let (4, a) and (B, 3) be F-coalgebras, and suppose that
(A, @) is final. The following can be easily proved. For any 7 : (4,a) — (B,B):
if 7 is epi then 7 is an isomorphism (cf. [Smy92]). Note that this generalizes
the fact that for an ordered set (P, <) and a monotone function f : P — P:if
p,q € P, with p the greatest post-fixed point of f and ¢ > p, then ¢ < f(q) im-
plies p = g—another formulation of the co-induction principle mentioned above.

In particular, locally continuous (endo-)functors on the category of complete
partial orders will be investigated. These functors are well-known to have an
initial F-algebra (see [SP82]), which is at the same time a final F-coalgebra. A
structural co-induction theorem will be proved, giving a number of equivalent
characterizations for such final F-coalgebras. Maybe the most surprising and
interesting one is the equivalence between finality and so-called order strong-
eztensionality, stating that two elements are ordered if and only if they are
related by a so-called ordered bisimulation. Order-bisimulations generalize the
F-bisimulations of [AM89], which at their turn are categorical abstractions of
the notion of bisimulation of [Par81, Mil89]. In the present paper, the defini-
tion of ordered bisimulation from [Fio93] is used, which generalizes the original
definition from [RT93] by the use of lax-homomorphisms.

The co-induction theorem (Section 5) is presented as and named after a dual-
ization of the structural induction theorem of [Plo81] (but see also [LS81]), which
is repeated here in the Appendix. Part of this dualization is fairly straightfor-
ward; order strong-extensionality, however, does not arise as the dual of the
structural induction principle for w-inductive sets (clause (3) of the induction
theorem), nor do the corresponding parts of the proof. Note that because initial
algebras of locally continuous functors are also final, both the induction and the
co-induction theorem apply to them.

In Section 6, the co-induction theorem is used to extend the final semantics
approach of [RT93] (initiated in [Acz88]) to the ordered case: the unique arrow
from a coalgebra to a final coalgebra is shown to preserve and reflect the bisimu-
lation order. The paper is concluded by proving, in Section 7, a slightly adapted
version of the co-induction theorem for a category of metric spaces and locally
contracting functors, in very much the same way. This last result is illustrated
by the description of a metric hyperuniverse.

2 Preliminaries

Let C be a category and F : C — C be a functor from C to C. An F-coalgebra is
a pair (4, a), consisting of an object A and an arrow o : A — F(A)in C. It is
dual to the notion of F-algebra: an F-algebra is a pair (A, @), consisting of an
object A and an arrow «a : F(A) — A in C.
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For instance, any preorder (P, <) is a category (with an arrow between two
elements iff they are order related) and post-fixed points of monotone functions
f: P — P are examples of f-coalgebras.

The collection of F-coalgebras constitutes a category by taking as arrows
between coalgebras (A4, «) and (B, () those arrows f : A — B in C such that
Bo f=F(f)oa;that is, the following diagram commutes:

A f B
a * B
F(4) F(B)

F(f)

Such an arrow f from (4, ) to (B, 3) is called a homomorphism of F-coalgebras.

For example, a graph (N, —), consisting of a set N of nodes and a collec-
tion — of (directed) arcs between nodes can be regarded as a coalgebra of the
(covariant) powerset functor P on the category Set of sets as follows: define
child : N — P(N) by, for all n € N, child(n) = {m | n — m}. Arrows between
graphs (as coalgebras) are those mappings between the sets of nodes that respect
the child relation.

Definition1. An object Ain Cis called final if for any other object B in C there
exists a unique arrow from B to A. It is the dual notion of initial object (unique
arrow from the object). Final and initial objects are unique up to isomorphism.

O

The following is standard (see, e.g., [SP82]).

Proposition2. Every final F-coalgebra (A, a) is a fized point of F (that is, «
8 an isomorphism). O

3 Coalgebras in CPO

Let CPO, be the category with complete partial orders (D, Cp) as objects and
strict and continuous functions as arrows. For any two cpo’s D and E, the set
hom(D, E) of arrows between D and E is itself a cpo, with the usual order: for
all f,g € hom(D, E),

f<g=Vze D, f(z)Ck g(z)

Moreover composition of arrows is continuous with respect to this ordering.
Therefore the category CPO, is called an order-enriched (or O-) category ([SP82]).
The structure on hom sets can be used to characterize a class of functors.
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Definition8. A functor F : CPOL — CPO_ is locally continuous if, for any
two objects D, E € CPO, the mapping

Fp,g : hom(D, E) — hom(F (D), F(E))

is continuous. Similarly, F is locally monotonic if Fp g is monotonic. O

Next we recall the definition of the subcategory CPO® of CPO,. If D and
D' are cpo’s and p¢ : D — D' and p? : D' — D are arrows in CPO then
(ue, pP) is called an embedding-projection pair from D to D' provided that

P’p o ”e =1dp and .‘-‘e ° /'Lp Shom(DllDl) idD’~

Note that the one half of such a projection pair determines the other. Let CPO®
denote the subcategory of CPO . that has cpo’s as objects and embedding-
projection pairs as arrows. Note that also CPO?F is an order-enriched category.
The following theorem is standard (see [SP82]).

Theorem 4. Every F : CPO, — CPO_ that is locally continuous can be ez-
tended to a functor F¥ : CPO® — CPOF that is w-continuous (preserving
colimits of w-chains): on objects FE s identical to F; and on arrows, F¥ is
given by

FE((u®, u?)) = (F(p®), F (1))

A fized point of F is obtained by constructing an initial FE _glgebra D in CPOE
as the colimit of the w-chain (Dy, ctn)n, given by Do = {L}, the trivial embedding
ao : Dy — F(Dg), and for alln >0, Dpy1 = F(Dn), @n41 = F(ay). 0

This fixed point D is an initial FZ-algebra (D,i ") in the category CPO®.
Moreover, it can also be seen to be an initial F-algebra in CPO, : the fact that D
is a colimit (of its defining chain) in CPO¥ implies, by a little exercise (Exercise
4.17 from [Plo81]—to be precise), that it is a colimit in CPO ) as well; then
the ‘Basic Lemma’, from [SP82], immediately yields the result. By the so-called
“limit-colimit coincidence” for O-categories, which is extensively discussed in
[SP82), the dual of these facts also holds: Let CPO” be defined as (CPO®),
the opposite category of CPOE. Thus arrows in CPOF are mappings u? for
which there exists a (unique) ¢ such that (u®, u?) is an embedding-projection
pair. The fact that (D,77!) is an initial FZ-algebra (in CPO®) implies that
(D, i) is a final FP-coalgebra in CPO®. (Here F? is defined analogously to
FE ) Again, (D,1) is a final F-coalgebra in CPO as well, which can be shown
by dualizing the little argument above. Summarizing, we have the following.

Theorem 5. Let F : CPO, — CPO . be a locally continuous functor and let
(D,471) be the (in CPOF ) initial FZ-algebra as described above. Then (D, 1) is
a final FP -coalgebra in CPOT as well as a final F-coalgebra in CPO .. o
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4 Ordered F-bisimulation

In [AM8Y], a categorical generalization of the notion of bisimulation of [Par8l,
Mil89] has been given in terms of coalgebras of functors on a category of classes.
In [RT93], this definition is extended to functors F on arbitrary categories, yield-
ing the notion of F-bisimulation. The order on hom sets in the category CPO |
makes the following generalization of that definition possible. Let for the rest of
this section F: CPO; — CPO, be a functor.

Definition 6. Let (A4, a) be an F-coalgebra and R a relation on A with pro-
Jjections 7y, my : R — A. (That is, R C A x A is a cpo (R,CRr) such that the
inclusion function i : R — A x A is continuous.) Then R is called an ordered
F-bisimulation on (4, ) if there exists an arrow 8 : R — F(R) such that

1 T2

R A R

I) > a * Jéj

F(R) F(4) F(R)
F(m) F(m3)

That is, 73 is a homomorphism of coalgebras (satisfying F(m)o8 = ao;), and
my is a so-called laz-homomorphism: it satisfies F(m1) o8 > ao7y. O

The above definition is from [Fio93] and generalizes an earlier definition of
ordered bisimulation given in [RT93], which required the existence of two coal-
gebra mappings (1,82 : R — F(R) such that 8; < (3, and both 7; and 7 are
coalgebra homomorphisms. The latter can be seen to be a special instance of the
definition given above by taking 8 = 3;. (Cf. the notion of simulation in [Pit92];
see also [Pit93], where proof principles that combine induction and co-induction
are studied.)

The following definition generalizes the notion of strong extensionality used
in [Acz88] (in the context of non-well-founded set theory). It is sometimes called
internal full abstractness (cf. [Abr91]).

Definition 7. Let (4, a) be an F-coalgebra, and let T4 be the order on A. Let
CFC A x A be defined by

cf= U{R C Ax A| Ris an ordered F-bisimulation on (4, ) }.

Elements a,b € A with a CF b are called (ordered) F-bisimilar. Now (4, «) is
called order strongly-eztensional if, for all a,b € A,

aCaboalf b
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Ezample 1. A deterministic partial transition sysiem is a pair (S, —) consisting
of a set S of states and a transition relation —C S x S that is a partial function.
We assume that S contains a minimal element Lg and is otherwise discretely
ordered. Furthermore we assume that {s € § |Ls— s} = 0.

Such transition systems can be represented as coalgebras of the functor (-). :
CPO, — CPO., which maps a cpo D to its lifted version (D)1 by extending D
with a new minimal element Lpew. For (S, —), define a: S —(S)L, fors €S,
by

1 ; —_ 1
a(s):{s ifs—s

1 new otherwise.
An ordered (-)-bisimulation (R,5) on (S, @),

w
R s R

g 2 a B

(R)L (S)s (R)L
(r1)1 (m2)L

satisfies for all s, € § with s Rt, and for all s' €S,
ifs—s then3t' €8, t—t'and s’ Rt'.

Two states s and ¢ in S are bisimilar whenever the number of subsequent tran-
sition steps that can be taken from ¢ is at least as big as the number of steps
that are possible starting from s. If 3 would be such that also 7; is a coalgebra
homomorphism, then two states are bisimilar if they can take the same number
of steps. 0

Ezample 2. A nondeterministic transition system with divergence is a triple
(8,~=,1)

consisting of a set S of states, a transition relation —C S x S, and a divergence
set TC S. (This is the—for simplicity—unlabelled version of the transition sys-
tems with divergence considered in [Abr91].) One should think of states s in 1
(notation: s T) as having the possibility of divergence. Similarly s | is used to
indicate that s converges, that is, s not in T.

As above, we assume that S has a minimal element Ls, satisfying now {s €
S|ls—s}=0={s€S|s—Ls} (soLsisnotinvolved in any transitions)
and in addition Lg?7. We shall only consider transition systems that are finitely
branching, i.e., for all s € S, the set {s’ € § | s — s'} is finite.

Transition systems with divergence can be represented as coalgebras of the
functor P : CPO, — CPO,, which takes a cpo D to the Plotkin powerdomain
of its lifted version (D)., extended (as in [Abrd1]) with the empty set. In the
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ordering of P(D), the empty set is greater than the bottom element { Lnew}, and
incomparable to all other elements; non-empty sets X,Y &€ P(D) are ordered
as usual by the Egli-Milner order. For (S, —, T) define a : § — P(S) by, for all
s €S,

a(s)={s'€S|s—s'tU{Llnewe (S)L |s T}
An ordered P-bisimulation (R, ) on (S, «),

1 ™2

P(m1) P(m2)
satisfies for all s,t € S with sRt, and for all s',¢' € S,

if s — ¢ then 3t' € 5, t — t'and s'Rt’;
if s | then (¢ | andift — ¢ then 3s' € S, s — s'and s'Rt’ ).

(Relations satisfying these two conditions are called partial bisimulations in
[Abr91].) For suppose sRt and s — s'. By the definition of @, s' € a(s) =
aom(s,t), and because of >1, also s’ € P(m1)(B((s,t)). Thus there exists tesS
with (s',t') € B((s, ), satisfying s'Rt'; %, implies t' € «(t) whence t — 1.

Next suppose s |. Thus Lnew& a(s) and hence Lnew& P(m1)(B((s,t)), by
>, and the definition of the Egli-Milner order. By the definition of P(71) it
follows that Lnewd B((s,t)) (since for any X C (§)L, P(m1)(X) contains Lnew
iff X does). Thus by 2, a(t) does not contain Lnew, thatis, ¢ |. Further suppose
t — t'. By o, there is s’ € S with (s',¢') € B((s,t)). By >1 and the fact that
a(s) does not contain Lpew (nor Ls), it follows that s’ € a(s), thus s — s'.

Conversely, any relation R C S x S (not involving Ls) satisfying the two
above conditions can be turned into a P-coalgebra (T, 3) by defining

TERU({J_s}XS)
and 8 : T — P(T) by, for all sTt,

B((s,t)) ={(s',t') €T |s— s’ and t — ¢’ and s'Rt'}
U{(Lls,t')€T|s] andt—t'}
U{Llnew€ (T)L |sT andt 1}

It is left to the reader to verify that (7', 3) is an ordered P-bisimulation. |
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5 A structural co-induction theorem

Next we formulate and prove the main theorem of this paper. (The definitions
of some of the categorical and order-theoretic notions used here, can be found
in the Appendix.)

Theorem8. Let F: CPO, — CPO, be a locally continuous functor. Let (4, a)
be an F-coalgebra. Then of the following siz statements, (1), (2), (2°), (4) and
(5) are equivalent and all tmply (8). If F moreover weakly preserves ordered
kernel pairs then all statements are equivalent.

1. (A, @) is o final F-coalgebra.
2. o is epi; and for any F-coalgebra (B,[) and coalgebra homomorphism e :
(4,a) — (B, B): if e is epi then it is an isomorphism:

4—= B
a * Jé]
F(A) F(B)

F(e)

27 As 2., but with epi replaced by dense-epi, twice.
8. a is dense-epi and (A, ) is order strongly-extensional; that is, if E4 is the
order on A then

Ca= U{R CAx A| R isan ordered F-bisimulation on (4, ) }.

. « is an isomorphism and 14 = ph. a~* o F(h) o a (the least fized point).

. (A, @) is mazimally-final: it is a final F-coalgebra and for any F-coalgebra
(B, B) the unigque coalgebra homomorphism e : (A, &) — (B, 3) is mazimal
among the laz-homomorphisms between (4, ) and (B,B); that is, for any
f:B— A, ifaof < F(f)opB then f < e.

[

Schematically:
10202 ©4a5= 3,

3 + F weakly preserves ordered kernel pairs = 2.

Proof:
(1) = (2): By Proposition 2, « is an isomorphism and hence epi. Consider an
epi e : A — B and suppose e : (4,a) — (B,B) is a coalgebra homomorphism.
Since (A, «) is final there exists a unique h: (B, 8) — (4, «). Thus both 1,4 and
h o e are arrows from (4, a) to itself. By finality hoe = 14. From
(eoh)oe=eo(hoe)
=e€e0 1A

::].BOC
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and the fact that e is epi, it follows that ec h = 15.

(2) = (1) : First we observe that « is an isomorphism, which follows from
applying (2) to the following diagram (note that here the fact is used that « is
epi):

A—2 L F(a)
o * F(a)
F(4) F(F(A))
F(a)

Let (D,i71) be the initial F-algebra from Theorem 4. We saw (Theorem 5) that
(D, 1) is a final FP-coalgebra (in CPO®). Since « is an isomorphism it is also a
projection, hence there exists a projection e : A — D, which (by the construction
of D) is also an arrow of coalgebras e : (4,a) — (D, i). Now every projection is
epi and by applying (2), e can be seen to be an isomorphism. Because (D, 1) is
a final F-coalgebra in CPO —again by Theorem 5—and (4, «) and (D, ) are
isomorphic coalgebras, it follows that also (A4, ) is a final F-coalgebra.

(1) < (2') : Inspection of the above two implications tells us that their proofs
remain valid when epi is replaced by dense-epi.

(1) = (4) : The finality of (4, «) implies that « is an isomorphism. Since F
is locally continuous the function Ah.a~! o F(h) o « is continuous. Define g =
ph. a~to F(h)oa. It is immediate that cog = F(g)oa, thus g : (4,a) — (4, @).
By finality, g = 14.

(4) = (2) : Since a is an isomorphism it is also epi. Consider an epi e : (4, &) —
(B,B). We prove that e is an isomorphism. Let g = ph. o' o F(h) o 8. Then
aog = F(g)op, and we have the following diagram:

B—2Y 4 ° .3

B * o * Jéj

F(B)

F(A)
F(g) Fle)
Next we show that g oe = 1,4 from which it follows—as in the proof of “(1) =

(2)”—that e o g = 15, using the fact that e is epi. First we prove goe < 1y,
using the fixed-point definition of g:

e (\bEB. Lg)oe=Xa€ A. L4< 14.
e Suppose goe < 1y, then

a"loF(g)ofoe=a"toF(g)oF(e)oa
1

F(B)

=«
<1y

oF(goe)ou
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since, by assumption, goe < 14, and the facts that « is an isomorphism and
F is locally (continuous and hence) monotonic.

Next we shall use 14 = ph. ™! o F(h) o o from (4) to prove 14 < goe:

e dace 4. Ly<goe.
e Suppose h < goe. Then

a~lo F(R)oa < (since F is locally monotonic)
“loF(goe)oa
=a loF(g)oF(e)oa
=a loF(g)ofoe
=aloao goe
=goe.
(1) = (5) : Let f: (B,B) — (A, a) be a lax-homomorphism. By Proposition 2,
a is an isomorphism. Define a sequence of functions from B to A inductively by
e = f,
ent1 =a o Fley)op.

Then (en)n is a chain (f < a~!o F(f) o 8 because f is a lax-homomorphism)
and its least upperbound e satisfies

e = Uen
= Ua'l oF(en)of3
= (by local continuity of F)
ato F(Uen) op

=a loF(e)op.
Hence e is the unique coalgebra homomorphism from (B, ) to (4, «). It follows
from the definition of e that f <e.
(5) = (1) : trivial.

(4) = (3) : The fact that « is an isomorphism implies that it is dense-epi. We
have to show that

Ca= U{R C Ax A| Ris an ordered F-bisimulation on (4, «) }.

The inclusion from left to right follows from the fact that C4 is an ordered
F-bisimulation on (A4, «): First observe that T4, with the inherited order from
A x A, is a cpo. Next define A: A —C 4 by, forall a € 4, A(a) =< a,a > and
B :Ca— F(C4) by

B=F(A)oaom,.
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Then (C4,3) is an ordered F-bisimulation on (4, a):

Ca - A = Ca
A A
B > a * B
F(4) F(4)
F(Ca) F(A) F(Ca)
F(m) F(m)

since

aomy = (because 1 0 A = 14)
F(rioA)oaom
< F(m)oF(A)oaom,
= F(m)o0p,

and

aomy = F(ryo0A)oaom,
= F(m3) 0 B.
Conversely, consider an ordered F-bisimulation (R, ) on (4, a):

T T2

R A R

B > o x B

F(R) F(4)

F(m) F(ms)

F(R)

We prove R C C 4 or rather, equivalently, m; < 72. We use fixed-point induction
on 14 (which by (4) is equal to ph. @™t o F(h) o a) to show 14 oy < my:

® ()\CLGA. _I_A)O‘Il'l < 7.
e Suppose how; < my. Then

a loF(h)oaom <a"toF(h)oF(r)of

=a toF(hom)of

< (because hom < 73 and F is locally monotonic)
1o F(m)op

—loaowz

I
3 R R

2
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(8) = (2') : We prove this implication, from which the equivalence of (1) - (5)
follows, under the assumption that F weakly preserves ordered kernel pairs.

By assumption a is dense-epi. Consider a homomorphism of coalgebras e :
(A,a) — (B,B) and suppose e is dense-epi. We shall prove that e is an isomor-
phism. Define

R.={(a,0') € Ax A|e(a) Ce(a)}.

The continuity and the strictness of e imply that R, is a cpo. Below it is shown
that it can be extended to an F-coalgebra (R.,v), such that (R.,~) is an ordered
F-bisimulation on (4,a). Then from the order strong-extensionality of (4, @) it
follows that R, CC 4. Hence e is a strict order-monic and since e is also dense-epi,
it is an isomorphism (see the Appendix).

For the existence of an arrow v : R, — F(R.) the assumption that F' weakly
preserves ordered kernel pairs will be used.

™2

R. A
3y A © B
r F(m, v
F(R.) (2 F(4) B
F(m) ’ F(e)
F(A) o F(B)

Since (Re,71,72) is an ordered kernel pair for e, (F(R.), F(m1), F(72)) is by
assumption a weak ordered kernel pair for F(e). Now
F(e)oaom =foeom
<PBoeom;
=F(e)oaoms,

from which the existence of an arrow v : R, — F(R.), with ao 7y < F(m) oy
and a o 2 = F(72) oy follows. Thus R, is an ordered F-bisimulation. 0

The fact that the final F-coalgebra (D, ¢) from Theorem 4 is order strongly-
extensional was already proved in [RT93]. (The proof given there makes explicit
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use of the way D is constructed (as the projective limit of its defining w-chain).)
The equivalence of finality and maximal-finality ((1) and (5)) is due to [Plo91]

The main contribution of the above theorem is the proof of (3) = (2),
showing—for functors that weakly preserve ordered kernel pairs—that coalge-
bras are final if they are strongly extensional. Most functors (lifting, sum and so
on) weakly preserve ordered kernel pairs.

Note that for locally continuous functors on CPQ, there always exists an
arrow from any F-coalgebra to an F-coalgebra (4, «) for which « is an isomor-
phism. For such functors, therefore, a final coalgebra is completely determined
by the uniqueness part in the definition of finality. This explains why order
strong-extensionality can be shown to be equivalent to finality.

Clearly, the clauses (1), (2) and (4) are fairly straightforward dualizations
of the corresponding clauses in Plotkin’s induction theorem (repeated here as
Theorem 10 in the appendix). The proofs of the equivalence of (1) and (2), and of
the implications (1) => (4) and (4) = (2) are immediate from the corresponding
parts in the proof of the induction theorem. Clause (3) above cannot be seen as

a dualization of any of the clauses of Theorem 10. For a further remark on this
poin see Section 8.

6 Ordered final semantics

Final coalgebras are furthermore characterized by the following theorem, which
shows that they present a natural way of modelling bisimulation.

Theorem9. Let F : CPO, — CPO, be a locally continuous functor, and
suppose that F weakly preserves ordered kernel pairs. Let (A,a) be a final F-
coalgebra and let f : (B,B) — (A, «) be a coalgebra homomorphism (which is
unigue by finality of (4, @)). For all b, € B,

bEF Y o f(b) Ta F(B).

Proof: _
From left to right: consider b,b' € B with b CF b'. Let (R,v) be an ordered
F-bisimulation on (B, 8) with bRb'. From

R—™ g T 4T oy m 4
o e I P R
F(R) F(B) F(4) F(B) F(R)
F(7y) F(f) F(f) F(7,)

it follows that f o m; is a lax-homomorphism from (R,v) to (4, «) and that
f omy is the (by finality of (4, @)) unique coalgebra homomorphism from (R, )
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to (4, a). It follows from Theorem 8 (clause (5)) that f o7 < foms. Thus
f(b) Ca f(b')-

As in the proof of (3) = (2') in Theorem 8, it can be shown that the ordered
kernel pair

R; ={(b) € Bx B| f(b) Ca f(¥)}

of f can be extended to an ordered F-bisimulation (Ry,7v) on (B,pB) (using the
fact that F weakly preserves ordered kernel pairs), from which the implication
from right to left follows. |

The unique arrow f : (B,) — (4,a) could be called (having in mind, e.g., a
transition system represented by (B,()) the ordered final semantics for (B, B).
Cf. the final semantics of [Acz88, RT93], where symmetric F-bisimulations are
used.

The above theorem can be seen as yet another characterization of final coal-
gebras, since its reverse also holds: if (A, ) is an F-coalgebra such that for all
coalgebra homomorphisms f : (B,5) — (4, «) and, for all b, b’ € B,

bCF b & F(b) T4 F(¥'),

then (A, @) is a final F-coalgebra. Take (4, «) for (B, B) and 14 for f to see that
(4, ) is order strongly-extensional (using in addition the fact that T4 is itself
an ordered F-bisimulation); by Theorem 8, (4, @) is final.

Ezample 1, continued. Let N be the set of natural numbers with the usual order-
ing and extended with a top element w, and let ¢ : N — (IN) L be the obvious iso-
morphism. Then (N, ¢) is a final coalgebra of the functor (-)L : CPOL — CPO..
For a deterministic partial transition system (S, —), represented as a (-)1-
coalgebra (S, a), the final semantics f : (§,a) — (N, ) maps a state s € S
to the natural number (possibly w) corresponding to the number of transition
steps that can be taken starting in s. |

Ezample 2, continued. The functor P : CPOL — CPOL, which takes a cpo
D to the Plotkin powerdomain (with empty set) of (D) is locally continuous
(see [Plo81]) and has by Theorem 5 a final coalgebra (P, ¥). By Theorem 8, we
know that (P, ) is order strongly-extensional, thus finding back (an “unlabelled”
version of) Proposition 3.10 from [Abr91]. Since P can be shown to preserve
weakly ordered kernel pairs, Theorem 9 applies. Thus for the final semantics
f:(S,a) — (P,9) of a nondeterministic transition system (S, —, 1), represented
as the P-coalgebra (S, a), we have for all 5, € S,

sCP t o f(s) Tp £(2),

sometimes called the full abstractness of f. (Similar results are obtained in
[Abr91] by means of Stone duality.) O
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7 Metric spaces

In [AMB89], bisimulations are defined as coalgebras (R,) (in a category of
classes) for which both projections 7; and 7, are coalgebra homomorphisms
(not only ). For such symmetric bisimulations, the category of complete met-
ric spaces offers a suitable framework as well. It has been studied in great detail
in [RT93]. In this section, we shall point out that the preceding co-induction
theorem also applies to metric spaces, and next use the resulting theorem to
prove some properties of a metric hyperuniverse.

Let CMS be the category with (1-bounded) complete metric spaces (D,dp)
as objects and non-expansive (non-distance-increasing) functions as arrows. (For
basic facts on metric spaces see, e.g., [Eng89].) Hom sets in CMS are themselves
complete metric spaces, using as a metric on arrows the usual pointwise exten-
sion. A functor F' on CMS is locally contracting if there exists € with 0 < e < 1
such that, for all D, E, the mapping Fp g is a contraction with factor e. In
[RT93], it is shown (extending earlier results of [AR89]) that every locally con-
tracting functor F has a unique fixed point which is both an initial F-algebra
and a final F-coalgebra.

A ‘metric version’ of Theorem 8 is obtained by dropping—both in the formu-
lation of the theorem and in its proof—the word ‘order(ed)’ everywhere; consid-
ering in clause (3) only symmetric bisimulations; replacing in clause (4) the least
fixed-point characterization of 14 by the statement that it is the unique fixed
point; and by dropping clause (5) (the notion of lax-homomorphism does not
make sense in a metric setting). Note that the definitions of ‘weakly preserving
kernel pairs’ and ‘dense-epi’ can be adapted straightforwardly. The proof can
be almost literally copied: the proof of (4) = (2) becomes somewhat simpler
because of the uniqueness of 14; and in the proof of (3) = (2'), the kernel pair
of f should be taken rather than the ordered kernel pair.

Ezample 8. Let P, : CMS — CMS be defined by, for all (D,dp) € CMS,
P(D)={X C D| X is compact (w.r.t. dp) }.

(The metric on P.(D) is the so-called Hausdorff metric.) For every e with
0 < € < 1, the ‘shrinking’ functor id, is given by, for any (D,dp),

ide((D,dp)) = (D, ¢ dp).

Clearly id. is locally contracting. Taking the composition P, o id. (which we
shall by abuse of notation again denote by P.) yields again a locally contractive
functor. Thus there exists a fixed point

vy:H=P(H),
and (H,7) is a final P.-coalgebra. 0

Because the metric space H is isomorphic to the collection of its compact subsets
(note the presence of the ‘metric shrinker’ id,, though), it is an instance of a
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hyperuniverse. (See [FH92] for a general construction of hyperuniverses, and
[FH83] and [Acz88] for a hyperuniverse based on a mon-standard collection of
axioms. Cf. [Abr88, MMO89, Rut91].) By putting, for p, peH,

p €np = p €v(p)

H can be easily seen to contain all so-called hereditarily finite sets and their
limits (with respect to the metric on H). Note that these limits need not be
hereditarily finite themselves.

As pointed out in [Abr88], the standard axioms of set theory hold in H,
with topological versions of separation, replacement and choice. By (the metric
version of) Theorem 8, strong extensionality can be added to these axioms: two
sets in H are equal if and only if they are P-bisimilar. E.g., for p,q € H with
(omitting the isomorphism 7)

p={r}, ¢={a},

p = q follows from the fact that {(p,q)} is a P.-bisimulation on H.

8 Conclusion

As was observed above, the characterization of final coalgebras in terms of strong
extensionality (clause (3) of Theorem 8) does not have a dual counterpart among
the clauses of the structural induction theorem (Theorem 10 in the Appendix).
However, the latter theorem can be extended with a fifth, equivalent clause
that comes close to being the dual of clause (3) of Theorem 8, as follows. An
F-congruence on an F-algebra (A,qa) is an F-algebra (R, ) with R a relation
on A such that the projections 7,7, : (R,8) — (4, ) are homomorphisms of
F-algebras. This definition generalizes the standard notion of a congruence on z-
algebras. Note that it is dual to the definition of symmetric bisimulation. Clauses
(1) through (4) of Theorem 10 can be shown to be equivalent to the following
statement: there exists 8 : F(A) — A (with A = {(a,a’) € Ax A |a =4d})
such that (4, B) is the smallest F-congruence on (4, @).
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9 Appendix

Some categorical notions

Let C be a category. An arrow m : A — B is called monic if for any two arrows
f,g: D — A the equality mo f = mog implies f = g. An arrowe: A — B is
called eps if for any two arrows f,g : B — D the equality foe = g o e implies
f=g

A kernel pair (see [Lan71]) for an arrow f : B — C in C consists of an object
A and a pair of arrows h: A — B and k: A — B such that foh = fok, and
such that for any other object A’ and arrows h' : A’ — B and k' : A' — B with
foh! = fok!, there exists a unique arrow e : A’ — A satisfying ' = hoe and
k=koe:

A
e k'
N 4—F " B
h f
B o
f

Ordered kernel pairs

In C = CPO,, the above definition can be generalized as follows. An ordered
kernel pair for a function f : B — C in CPO_ consists of a cpo A and a pair of
functions h: A — B and k : A — B such that foh < f ok, and such that for
any other cpo A’ and functions A’ : A’ — B and k' : A’ — B with foh' < fo K,
there exists a unique arrow e : A’ — A satisfying ' = hoe and k' =koe.

The cpo A with functions h and k is called a weak ordered kernel pair for
f if for any other cpo A’ and functions A’ : A’ — B and k' : A' — B with
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foh' < fok, there exists an arrow e : A’ — A (not necessarily unique)
satisfying h’' < hoe (rather than ' =hoe)and k' =koe.

A functor F : CPO, — CPO_ weakly preserves ordered kernel pairs if it
transforms ordered kernel pairs for functions f into weak ordered kernel pairs

for F(f).

Some further order-theoretic notions

Let D be a cpo and consider a continuous function f : D — D. (That is, f
preserves least upperbounds of w-chains.) Then f has a least fixed point, which
is denoted by pzx. f(x).

A subset P C D is called w-inductive if every chain (z,)n in P has its least
upperbound in P.

The following is called the principle of fixed-point induction. Let f: D — D
be continuous and let P C D be w-inductive. Then

(LeP A (Vz€D[z€ P= f(z) €EP]) = (pz. f(z))€P

A strict order-monic (see [Plo81]) is a strict continuous function (in CPO )
m : A — B such that for any two arrows f,g : D — A the inequality mof < mog
implies f < g. It is easy to see that m is a strict order-monic if and only if, for
alla,a’ € 4,

a C d & m(a) C m(a').

A strict continuous function e : A — B is dense-epi if it is epi and moreover
satisfies cl(e(A4)) = B, where cl(e(A)) is the least subset of B that contains e(A4)
and that is closed under least upperbounds of w-chains. (In fact the condition
cl(e(A)) = B can be shown, by transfinite induction, to imply the fact that e is
epi. See [LP82] for an explanation why “Epis need not to be dense”.)

If m : A — B is both a strict order-monic and dense-epi, then m is an
isomorphism: m(A) = cl(m(A)) since e is a strict order-monic, and cl(m(4)) =
B, since e is dense-epi. Thus e is a bijective order-embedding.

The structural induction theorem

In [Plo81] (Theorem 4 of Chapter 5), the following theorem is proved. (See also
[LS81] for a similar result.)

Theorem 10. Let F : CPO, — CPO, be a locally continuous functor which
preserves inclusions. (That is, if ¢: A C B then F(i) : F(A) C F(B).) Let o :
F(A) — A be an F-algebra. Then the following four statements are equivalent:

1. (4, a) is an initial F-algebra.

2. « is a strict order-monic, and for every strict order-monic m: B — A: if
there ezists 3 : F(B) — B such thatm : (B, 3) — (4, «) is a homomorphism
of algebras (i.e., mo B = ao F(m)), then m is an isomorphism.
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9. « is a strict order-monic, and for every w-inductive P C A the following
principle of structural induction holds:

(LeP A (VzeF(A)[z € F(P)= a(z)€P])) = P=A
4. a is an isomorphism and 14 = ph. @ o F(h)o et

The assumption that F preserves inclusions is only used to prove the equiv-
alence of (2) and (3). This property is satisfied by most covariant functors.



